Search results for "Nonlinear schrodinger-equation"

showing 3 items of 3 documents

A Study of the Direct Spectral Transform for the Defocusing Davey‐Stewartson II Equation the Semiclassical Limit

2019

International audience; The defocusing Davey-Stewartson II equation has been shown in numerical experiments to exhibit behavior in the semiclassical limit that qualitatively resembles that of its one-dimensional reduction, the defocusing nonlinear Schrodinger equation, namely the generation from smooth initial data of regular rapid oscillations occupying domains of space-time that become well-defined in the limit. As a first step to studying this problem analytically using the inverse scattering transform, we consider the direct spectral transform for the defocusing Davey-Stewartson II equation for smooth initial data in the semiclassical limit. The direct spectral transform involves a sing…

1st-order systemsApplied MathematicsGeneral Mathematics010102 general mathematicsSemiclassical physics01 natural sciencesinverse scattering transform0103 physical sciencesnonlinear schrodinger-equationLimit (mathematics)0101 mathematics[MATH]Mathematics [math]010306 general physicsMathematicsMathematical physicsCommunications on Pure and Applied Mathematics
researchProduct

Roadmap on optical rogue waves and extreme events

2016

Nail Akhmediev et al. ; 38 págs.; 28 figs.

:Ciències de la visió::Òptica física [Àrees temàtiques de la UPC]extreme eventsNonlinear opticsFreak-wavesProcess (engineering)Subject (philosophy)Supercontinuum generationPeregrine soliton01 natural sciences010309 opticsOptics0103 physical sciencesZero-dispersion wavelength[NLIN]Nonlinear Sciences [physics]Rogue wave010306 general physicsModulation instabilityComputingMilieux_MISCELLANEOUSPhysicsÒptica no lineal:Física [Àrees temàtiques de la UPC]Nonlinear schrodinger-equationbusiness.industryGinzburg-Landau equationnonlinear opticsRogue wavesOptical rogue wavesrogue wavesextreme events; nonlinear optics; rogue wavesExtreme eventsValue statisticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVariety (cybernetics)Photonic crystal fibersWork (electrical)Noise-like pulsesPeregrine solitonbusinessScientific terminology
researchProduct

Large-x Analysis of an Operator-Valued Riemann–Hilbert Problem

2015

International audience; The purpose of this paper is to push forward the theory of operator-valued Riemann-Hilbert problems and demonstrate their effectiveness in respect to the implementation of a non-linear steepest descent method a la Deift-Zhou. In this paper, we demonstrate that the operator-valued Riemann-Hilbert problem arising in the characterization of so-called c-shifted integrable integral operators allows one to extract the large-x asymptotics of the Fredholm determinant associated with such operators.

Pure mathematicsIntegrable systemNonlinear schrodinger-equationMathematics::Complex VariablesGeneral Mathematics010102 general mathematicsMathematicsofComputing_NUMERICALANALYSIS[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinantImpenetrable bose-gas[ MATH.MATH-FA ] Mathematics [math]/Functional Analysis [math.FA][MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]01 natural sciencessymbols.namesakeRiemann hypothesisOperator (computer programming)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesHilbert's problemssymbolsMethod of steepest descentRiemann–Hilbert problem010307 mathematical physics0101 mathematicsMathematics
researchProduct